Int - Final
Eloth (+6) 34 | 5 + 6 = 11 | 23
Strength 3/4.3
Karatallid (+3) 19 | 4 | 2 + 3 = 5 | -1 > 0.200 > finale
Merrid (+3) 19 | 5 | 6 + 3 = 9 | -4 > 0.444 > finale
Strength 3/4.2
Anomandaris (+3) 34 | 3 | 7 + 3 = 10 | -7 > 0.700
Barghast (+4) 32 | 5 | 7 + 4 = 11 | -6 > 0.545
Liosan (+4) 44 | 1 | 8 + 4 = 12 | -11 > 0.917
Okaros (+1) 14 | 5 | 5 + 1 = 6 | -1 > 0.167
Ruse (0) 13 | 6 | 8 | -2 > 0.250
Serc (+3) 27 | 1 | 3 + 3 = 6 | -5 > 0.833
Strength 3/4.1
Alkend (+4) 47 | 10 | 4 + 4 = 8 | 2
Int - Roll 5
Kalse (+6) 40 | 4 + 6 = 10 | 50
Int - Roll 4
Tulas Shorn (+5) 30 | 8 + 5 = 13 | 43
(Bonus - Int Finale)
Karatallid (+2) 19 | (3 + 2) * 0.200 = 1 | 18
Merrid (+2) 19 | (7 + 2) * 0.444 = 4 | 15
(Bonus - Strength 4)
Anomandaris (+3) 34 | 8 | (1 + 3) * 0.700 = 2 | 6
Barghast (+4) 32 | 8 | (8 + 4) * 0.545 = 6 | 2
Liosan (+4) 44 | 8 | (6 + 4) * 0.917 = 9 | -1 > 0.111 (finale)
Okaros (+1) 14 | 8 | (5 + 1) * 0.167 = 1 | 7
Ruse (0) 13 | 8 | 5 * 0.250 = 1 | 7
Serc (+3) 27 | 8 | (6 + 3) * 0.833 = 7 | 1
(Bonus - Int Finale)
Liosan (+4) 44 | (1 + 4) * 0.111 = 0 | 44
Int - Final
Eloth (+6) 34 | 10 + 6 = 16 | 18
Karatallid (+2) 18 | 1 + 2 = 3 | 15
Merrid (+2) 15 | 5 + 2 = 7 | 8
Liosan (+4) 44 | 7 + 4 = 11 | 33
Strength 3/4.3
Anomandaris (+3) 33 | 6 | 1 + 3 = 4 | 2
Barghast (+4) 31 | 2 | 5 + 4 = 9 | -7 => 0.778
Okaros (+1) 13 | 7 | 7 + 1 = 8 | -1 => 0.125
Ruse (0) 12 | 7 | 7 | 0
Serc (+3) 26 | 1 | 8 + 3 = 11 | -10 > 0.909
Strength 3/4.2
Alkend (+4) 47 | 2 | 5 + 4 = 9 | -7 => 0.778
Int - Roll 6
Kalse (+6) 50 | 8 + 6 = 14 | 64
Int - Roll 5
Tulas Shorn (+5) 43 | 5 + 5 = 10 | 53
(Bonus - Int Finale)
Barghast (+2) 31 | (5 + 2) * 0.778 = 5 | 26
Okaros (0) 13 | 1 * 0.125 = 0 | 13
Serc (+3) 26 | (5 + 3) * 0.909 = 7 | 19
(Bonus - Strength 4)
Alkend (+4) 47 | 8 | (3 + 4) * 0.778 = 5 | 3
Int - Final
Barghast (+2) 26 | 5 + 2 = 7 | 19
Eloth (+6) 18 | 1 + 6 = 7 | 11
Karatallid (+2) 15 | 3 + 2 = 5 | 10
Merrid (+2) 8 | 7 + 2 = 9 | -1 > 0.111
Liosan (+4) 33 | 5 + 4 = 9 | 24
Okaros (0) 13 | 5 | 8
Ruse (0) 12 | 2 | 10
Serc (+3) 19 | 10 + 3 = 13 | 6
Strength 3/4.4
Anomandaris (+3) 32 | 2 | 8 + 3 = 11 | -9 > 0.818
Strength 3/4.3
Alkend (+4) 46 | 3 | 9 + 4 = 13 | -10 > 0.769
Strength 3/4.1
Kalse (+2) 64 | 10 | 6 + 2 = 8 | 2
Tulas Shorn (+2) 53 | 10 | 3 + 2 = 5 | 5
(Bonus - Int Finale)
Anomandaris (+3) 32 | (8 + 3) * 0.818 = 9 | 23
Alkend (+4) 46 | (5 + 4) * 0.769 = 6 | 40
(Bonus - Strength 5/Return)
Merrid (+3) 8 | (10 + 3) * 0.111 = 1 | 7
Int - Final
Alkend (+4) 40 | 9 + 4 = 13 | 27
Anomandaris (+3) 23 | 3 + 3 = 6 | 17
Barghast (+2) 19 | 7 + 2 = 9 | 10
Eloth (+6) 11 | 6 + 6 = 12 | -1 > 0.083
Karatallid (+2) 10 | 3 + 2 = 5 | 5
Liosan (+4) 24 | 5 + 4 = 9 | 15
Okaros (0) 8 | 2 | 6
Ruse (0) 10 | 1 | 9
Serc (+3) 6 | 10 + 3 = 13 | -7 > 0.538
Strength 3/4.2
Kalse (+2) 64 | 2 | 10 + 2 = 12 | -10 => 0.833
Tulas Shorn (+2) 53 | 5 | 8 + 2 = 10 | -5 => 0.500
Strength 5
Merrid (+3) 7 | 3 + 3 = 6 | 1
(Bonus - Strength 4)
Kalse (+2) 64 | 8 | (4 + 2) * 0.833 = 5 | 3
Tulas Shorn (+2) 53 | 8 | (6 + 2) * 0.500 = 4 | 4
(Bonus - Strength 5)
Eloth (+6) 8 | (9 + 6) * 0.083 = 1 | 7
Serc (+3) 8 | (9 + 3) * 0.538 = 4 | 4
This post has been edited by Path-Shaper: 25 April 2011 - 07:51 PM
Only someone with this much power could make this many frittatas without breaking any eggs.